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Abstract 
Although it is well known that the rate of sintering is governed by deceleratory kinetics, it 
is often difficult to fit power-law and nth-order reaction models over broad time-
temperature ranges.  This work shows that a phenomenological model combining a 
reaction order with an activation energy distribution can correlate surface area as a 
function of sintering time and temperature over a greater range of those variables.  
Qualitatively, the activation energy distribution accounts the dependence of free energy 
on particle size and material defects, while the reaction order accounts for geometric 
factors such as a distribution of diffusion lengths.  The model is demonstrated for 
sintering of hydroxyapatite using data of Bailliez and Nzihou (Chem. Eng. J. 98 (2004), 
141-152).   
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1.  Introduction 
 

Sintering of powders is an industrial practice spanning many applications, and 
German1 gives an excellent introduction.  In very general terms, sintering is governed by 
two interrelated properties, a change in free energy, which provides the driving force for 
the process, and kinetics, which provides the mobility of the system to the lower free 
energy state.  Sintering can occur by many mechanisms, including viscous flow, plastic 
flow, evaporation-condensation, surface diffusion, volume diffusion, and grain-boundary 
diffusion. 

Predicting the kinetics of sintering has practical aspects for both process 
optimization and material lifetime prediction.  Process optimization is usually easier, 
because it is usually an interpolation problem for which the calibration data might cover a 
relatively narrow range of conditions.  Lifetime prediction is more challenging, since it 
involves extrapolation of artificial aging experiments outside the range of calibration.  
Consequently, a relatively small deviation in a model at the extremes of the calibration 
data can result in a relatively large error in lifetime prediction if the functional form is not 
correct. 

A vast literature exists on the kinetics of sintering, and various equations have 
been derived that use powers of time and particle size along with an Arrhenius 
temperature dependence.1  However, these models often have difficult correlating 
sintering data over wide ranges of time and temperature.  For example, the common nth-
order sintering model often requires n to be a function of temperature, with the qualitative 
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justification that the mechanism is changing as a function of temperature (e.g., Bailliez 
and Nzihou2). 

Changes in free energy driving the sintering process are ordinarily attributed to 
changes in the radius of curvature.  Less widely recognized is that sintering often starts 
with very imperfect crystals that have free energies substantially different from the 
perfect material.  For example, Rogers and Dinegar3 report that heats of fusion of 
pentaerythritol tetranitrate (PETN) crystals can have heats of fusion up to 20% less than 
the single crystal value, and the variation of the heat with crystallization conditions is far 
greater than changes in surface area caused by grinding.  A free energy distribution in the 
starting material will result in an activation energy distribution in the kinetics. 

Both nth-order and activation energy distribution kinetic models have been used 
extensively for modeling fossil fuel conversions.4  The earliest and simplest energy 
distribution model used a Gaussian distribution characterized by a mean, E0, and standard 
devaiation, σ.5  For systems with modest distributions of reactivity, nth-order (n ≤ 2) or 
Gaussian (σ ≤ 3% of E0) models work equally well, even with considerable extrapolation 
in temperature.  However, sintering is often, if not usually, characterized by reaction 
orders that are considerably larger, and possibly by free energy distributions as well, if 
the Rogers-Dinegar result3 for PETN is typical.  
 The hypothesis tested in this paper is that the temperature dependence of the 
reaction order can be removed if the kinetic model also includes an activation energy 
distribution.  We use the data of Bailliez and Nzihou,2 since it covers such a broad range 
of temperature and degree of sintering.  We find that the nth-order/Gaussian distribution 
model works very well, resulting in a several-fold reduction in nonlinear-regression 
residuals compared to using either single-n or Gaussian distribution models alone. 
 
2.  Sintering Models 
 
 Deceleratory sintering reactions are often characterized by a power law in time6,7  
 
  α ∝ (1+at)-ν         (1) 
 
where α is the extent of reaction (e.g., ratio of the change in surface area to the ultimate 
change in surface area, or 1-S/S0) and a and ν are constants, and t is time; or an nth-order 
reaction,2, ,8 9  
 
 -dα/dt ∝ (1-α)n        (2) 
 
Coming from different fields, Raynaud et al.10 and Tarutis11 independently note that the 
two approaches are actually equivalent, with the exponent of the power law in time being 
related to the order of the nth-order reaction by n = 1+1/ν.  Reaction order is commonly 
interpreted in geometric terms, e.g., shrinking-core reactions are described by n < 1.12  
Tarutis, drawing upon earlier work by Boudreau and Ruddick,13 notes that an nth-order 
reaction is mathematically equivalent to for n > 1 to a Gamma (near-exponential) 
distribution of reactivity.  Consequently, one can consider reaction order as a measure of 
a distribution of diffusion lengths, for example.  Regardless of the precise physical 
interpretation, n should be constant if the geometric progression of the reaction is 



independent of temperature, and all temperature dependence would be ascribed to a 
single activation energy, if one uses the standard Arrhenius rate law. 
 Alternatively, one can use a Gaussian distribution of activation energies to 
describe the distribution of reactivity.  In this case,  
 

 dα/dt = (1-α)∫
0

∞
 k(E) exp[-∫

0

t
 k(E)dt]D(E) dE     (3) 

 
where k = A exp(-E/RT), E is the activation energy, A is the frequency factor, R is the gas 
constant, and  
 
 D(E) = (2π)-1/2σ-1exp[-(E-E0)2/2σ2]      (4) 
 
where E0 is the mean energy and σ is the standard deviation.  Eq. (3) is actually simpler 
than it first appears.  It is implemented by discretizing the distribution into 11 to 21 
parallel independent nth-order reactions, depending on the magnitude of σ, having evenly 
spaced energies and weighting factors calculated from a Gaussian distribution. 
 Both approaches yield deceleratory curves at constant temperature, with the 
ultimate extent of reaction appearing to depend on temperature when n and σ are large.  
Calculations for intermediate values of both n and σ  are given in Figure 1.  In order to 
have the overall degree of sintering cover the same range, a higher mean energy is needed 
for the Gaussian model so that the lowest energy channel of the distribution is close to the 
single value of the nth-order reaction.  The shape of the deceleration and how it varies 
with temperature is different for the two models.  
 
Sintering of hydroxyapatite 
 

Bailliez and Nzihou2 provide an interesting data set for testing the ability of a 
combined nth-order activation energy distribution model to correlate the extent of 
sintering over a very wide range.  They present data for two hydroxyapatites:  HAPTCP 
was formed by reacting CaCl2, H3PO4, and NaOH; and HAPCaO was formed by reacting 
Ca(NO3)2  with (NH4)2HPO4 and ammonia.  The initial surface areas were 28 and 104 
m2/g, respectively. 

Data was digitized from the published plots of surface area versus time at various 
temperatures.  It was then fitted by nonlinear regression to nth-order, Gaussian, and 
combined models using the LLNL analysis program Kinetics05.4  Results of this analysis 
are given in Table 1.  A graphical comparison of data with calculation is given in Figure 
2 for the combined model. 

When only one of the two parameters (n or σ) is used, a better fit is obtained with 
the nth-order model for HAPTCP and with the Gaussian model for HAPCaO.  However, the 
best fit is obtained for both materials using both model parameters, and it is especially 
better for HAPTCP.  The mean activation energy for the Gaussian model is higher than for 
the nth-order model as explained in the previous section. 

The activation energies reported here are about one-third lower than those 
reported by Bailliez and Nzihou2.  The reason for this discrepancy is not certain, but it 
probably relates to the common problem of deriving activation energies under 



circumstances where the extent of conversion is not maintained constant.  In this case, the 
activation energy can shift from its true value to make up for other model deficiencies.14  
This is not possible by our method, since the entire data set is fitted simultaneously to the 
model.   
 
Conclusions 
 

The combination of an nth-order reaction model with a Gaussian activation 
energy distribution provides a simple yet powerful method for correlating sintering data 
over a very wide time-temperature range.  The nth-order aspect can be interpreted in 
terms of standard neck-growth phenomena and a distribution of diffusion lengths.  The 
activation energy distribution reflects the distribution of free energies for imperfect 
starting crystals.  While the combined model fits the data better than either aspect 
independently for both hydroxyapatite samples examined, the activation energy 
distribution aspect is considerably more important for the higher surface area material.  
The activation energies derived by nonlinear regression to the entire range of conversion 
simultaneously are more reliable than other forms of model fitting that sample different 
aspects of the reaction at different temperatures. 
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Table 1.  Hydroxyapatite kinetic parameters derived by nonlinear regression for the 
Gaussian and nth-order reaction models from the data of Bailliez and Nzihou2.   

 
 A, s-1 E0/R, K n σ, % of E0 RSSa

HAPTCP      
nth-order 8.43×1011 30313 6.89 0.0 0.1001 
Gaussian 1.63×1011 32508 1.00 17.2 0.3090 
Both 1.64×1013 33001 7.01 6.93 0.0762 

HAPCaO      
nth-order 1.79×109 24246 4.01 0.0 0.1530 
Gaussian 9.44×109 27383 1.00 11.4 0.1189 
Both 2.92×1010 27149 3.22 8.32 0.1046 
aResidual sum of squares from nonlinear regression
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Fig. 1.  Idealized sintering curves calculated from nth-order (top) and Gaussian activation 
energy distribution (bottom) models.  In both cases, A= 3×1015 s-1.  For the nth-order 
model, n = 5 and E/R = 30,000 K.  For the Gaussian model, σ = 10% of E0 and E0 = 
33,000 K.  The higher mean energy is needed for the Gaussian model so that the lowest 
energy channel of the distribution is close to 30,000 K. 
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Figure 2.  Comparison of measured and calculated fractions sintered (1-S/S0) for the nth-
order Gaussian energy distribution model.  The four model parameters are fitted 
simultaneously by nonlinear regression and are given in Table 1.
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